We recall that $G \rightarrow H$ denotes that there exists a homomorphism from G to H.

Exercise 1

Find a graph with as few vertices as possible that does not have a homomorphism to the cycle C_{6} on six vertices. Justify your answer.

Exercise 2

Among the following graphs, find which ones are homomorphic to which other ones.
Find the cores of each of the graphs. Justify your answers.

Exercise 3

Build two graphs G and H such that there is no homomorphism from G to H nor from H to G.

Exercise 4

Build a graph H such that for every planar graph G with at least one edge, $H \rightarrow G$.
Build a graph H such that for every planar graph G with at least one edge, $G \rightarrow H$. Justify your answers.

Exercise 5

Show that if $G \rightarrow H$, then :

$$
\begin{aligned}
& -\omega(G) \leq \omega(H) \\
& -\chi(G) \leq \chi(H)
\end{aligned}
$$

Exercise 6

Show that a graph G is a core if and only if every endomorphism of G is an automorphism.

Exercise 7

This exercise is a bit more open, and you are not expected to have a complete answer.
The square of a cycle on k vertices, denoted C_{k}^{2}, is defined as the graph with vertices $v_{1}, v_{2} \ldots v_{k}$ so that $v_{i} v_{j} \in E(G)$ if and only if $|i-j|=1[k]$ or $|i-j|=2[k]$. That is, C_{k}^{2} is exactly the cycle on k vertices where edges are added between vertices that share a neighbour.
For which values of i and j can you say that $C_{i}^{2} \rightarrow C_{j}^{2}$? For which values can you say that this does not hold. Justify your answer. (hint : you may want to consider the values of k modulo 3).

